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Abstract

The Kelly Criterion allows for the calculation of options premiums where the premium is a function of

capital utilization (a bonding curve)[1][2]. One important property to check for a set of options premiums

is whether the premiums allow for arbitrage. In this paper, a basic set of arbitrage conditions are tested

for the Kelly premiums output from a historical return distribution of Ethereum. The premiums output from

the Kelly Criterion using this distribution are shown to allow arbitrage in some cases. Presented here is

a method for using a set of arbitrage conditions to correct the premium prices from the Kelly Criterion so

that arbitrage is no longer allowed.

1 Problem Statement1

When generating a Potion Bonding Curve using the Kelly Formula (Kelly Curve) using an option-based2

payoff such as a Put, Call, or spread the generation process is based on the statistical properties of a3

returns distribution. Primarily, the entropy properties of the distribution determine how risk and reward are4

balanced by the Kelly formula.5

As a result, the outputs of the formula may or may not conform to the no-arbitrage expectations of6

the option pricing problem. In other words, the prices produced may in instances violate Put-Call parity7

or enable the buying and selling of combinations of options which result in a risk-free payoff. Whether8

the prices violate these conditions depends on the probability distribution which is supplied to the Kelly9

formula.10

If the probability distribution is derived from market data like historical prices or implied from currently11

observed option prices, a person analyzing the Kelly formula outputs will have control over only some12

aspects of this distribution. The analyzer will be able to control aspects such as sample rate, however,13

they will not control whether the prices generated by the distribution from real-life data will violate any14

arbitrage conditions. Presented here are tests for analyzing whether a set of Kelly curves conform to a15

loose set of no-arbitrage assumptions about the option prices.16

In addition, a procedure is introduced for modifying the Kelly curve generation process to produce17

suboptimal curves which conform to the supplied no-arbitrage constraints. The same procedure can be18

utilized with any constraints more (or less) complex than the loose assumptions presented here without19

any loss of generality.20

2 Notation21

In the equations derived in the subsequent sections, the following notation will be used:22

• r → risk free interest rate23

• q → continuous dividend interest rate24

• Ci → Call price i25

• Pi → Put price i26

• Ki → Strike price i27

• t → current point in time28
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• Tj → expiration time j29

• τj = (Tj − t) → time until expiration j30

• S → current price of the underlying31

The Put-Call Parity formula used in the subsequent derivations is the version with continuous dividend32

equivalent to an interest rate of the underlying asset:33

C − P = Se−qτ
−Ke−rτ , (1)

which allows the constraints to include any cash flow from the underlying that may include a dividend,34

yield, staking reward, or otherwise.35

3 No-Arbitrage Constraints36

The derivation of the no-arbitrage constraints presented here follows the derivation in Matthias Fengler’s,37

”Arbitrage-free smoothing of the implied volatility surface.” [3] The constraints on prices presented in Fen-38

gler are reused here as a test of the output Kelly curves. Another more complex set of constraints could39

be tested using the same technique.[4]40

For options pricing, a certain implied volatility value maps to a certain price. As a result, an implied41

volatility surface (values across strikes and expirations) translates into a set of prices across strikes and42

expirations. If this implied volatility surface is free of arbitrage, it also means that the options prices are free43

of arbitrage. Fengler exploits this fact to simplify the constraints defined. If these constraints were placed44

on the implied volatility surface, the formulas become complex and nonlinear. In contrast, the constraints45

in terms of prices are much simpler and make the procedures presented here clearer for the reader.46

Fengler covers only Call prices, so those will be examined first, and the Put formulas will be derived47

using the Call constraints and the Put-Call Parity formula. Some of these constraints on the Call prices48

are given in terms of first or second derivatives of the option prices. To provide checks in terms of option49

prices and not checks on their derivative values, these formulas are translated here to be in terms of the50

option price from the Kelly curve which needs to be checked.51

3.1 Calls: Monotonic Constraints52

One of the requirements for the Call prices to be free of arbitrage is that the prices need to be monotonic53

over the strikes. If the prices are not monotonic, it is possible using a vertical spread to buy an option of54

one strike and sell the option on another strike for risk-free profit.55

Fengler derives these two constraints using the definition of the Call price and taking the derivative56

with respect to the strikes. This yields:57

−e−rτ
≤

Ci+1 − Ci

Ki+1 −Ki

≤ 0, (2)

note that when the interest rate r is zero or the option is at expiration, the left side simplifies to −1.58

These constraints will now be separated into upper and lower bound.59

3.1.1 Lower Bound60

Looking at the inequality for the lower bound:61

−e−rτ
≤

Ci+1 − Ci

Ki+1 −Ki

, (3)

multiplying both sides by Ki+1 −Ki we get:62

−e−rτ (Ki+1 −Ki) ≤ Ci+1 − Ci, (4)

adding Ci to both sides:63

Ci − e−rτ (Ki+1 −Ki) ≤ Ci+1, (5)

which gives the formula for the lower bound on Ci+1.64



Figure 1: A plot of monotonically decreasing Call prices

3.1.2 Upper Bound65

Now examining the upper bound:66

Ci+1 − Ci

Ki+1 −Ki

≤ 0, (6)

multiplying both sides by Ki+1 −Ki we get:67

Ci+1 − Ci ≤ 0, (7)

and adding Ci:68

Ci+1 ≤ Ci, (8)

3.2 Calls: Convexity Constraints69

The convexity of the option prices comes from the second derivative calculated with respect to the strike70

price always being positive. The Black-Scholes formula assumptions cause this second derivative to71

be equal to the risk-neutral transition density multiplied by a discounting term.[3] This is known as the72

Breeden and Litzenberger formula.[5] Since probabilities are always positive, the second derivative is73

always positive and this gives the option prices the distinctive convex curve. Note: The image contains the74

option prices, not the payoffs.75

First, the simple lower bound:76

Ci ≥ 0. (9)

Next, we take the fact that Put prices are also positive and Put-Call Parity to derive a second constraint:77

Pi ≥ 0, (10)

use Put-Call Parity to substitute:78

Ci − Se−qτ +Ke−rτ
≥ 0, (11)

add S and K terms to both sides:79
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Figure 2: A plot of Call and Put prices with time still remaining before expiration at strikes 75%-125% every

5%. Note the convexity (curvature) of both price curves.

Ci ≥ Se−qτ
−Ke−rτ . (12)

Finally, we have the constraint that the second derivative is positive:80

Ci+2−Ci+1

Ki+2−Ki+1
−

Ci+1−Ci

Ki+1−Ki

Ki+2 −Ki+1
≥ 0, (13)

multiply both sides by Ki+2 −Ki+1:81

Ci+2 − Ci+1

Ki+2 −Ki+1
−

Ci+1 − Ci

Ki+1 −Ki

≥ 0, (14)

and add the second term to both sides:82

Ci+2 − Ci+1

Ki+2 −Ki+1
≥

Ci+1 − Ci

Ki+1 −Ki

, (15)

which is consistent with our expectation that if the second derivative is positive, the slope should be83

growing as we iterate over the strikes. Next, multiply both sides by Ki+2 −Ki+184

Ci+2 − Ci+1 ≥
Ci+1 − Ci

Ki+1 −Ki

(Ki+2 −Ki+1) , (16)

and finally add Ci+1 to both sides.85

Ci+2 ≥ Ci+1 +
Ci+1 − Ci

Ki+1 −Ki

(Ki+2 −Ki+1) . (17)

Finally, the Call upper bound[3]:86

Ci ≤ Se−qτ (18)

.87



3.3 Calls: Calendar Constraints88

Calendar arbitrage is when mispricing exists across expirations and a trader can use calendar spreads89

and other time-based spreads to obtain a risk-free profit. This is one of the trickiest conditions because90

the IV surface is allowed in certain situations to be downward sloping or humped. This downward sloping91

in the IV values can occur despite the option price monotonically increasing at each expiration further in92

time. However, as long as the total variance is strictly increasing for each expiration the prices will be free93

of calendar arbitrage.[3] This condition gives the constraint:94

Cm+1e
∫ Tm+1

0
r dt

K
>

Cme
∫

Tm

0
r dt

K
, (19)

where Cm and Tm are the Call price and time of expiration m. First, since r is a constant here, let us95

remove it from the integral:96

Cm+1e
r
∫ Tm+1

0
dt

K
>

Cmer
∫

Tm

0
dt

K
. (20)

Using the Fundamental Theorem of Calculus, we solve the integrals:97

Cm+1e
rTm+1

K
>

CmerTm

K
, (21)

and multiply both sides by K:98

Cm+1e
rTm+1 > CmerTm , (22)

then, divide both sides by the discounting term:99

Cm+1e
rTm+1e−rTm > Cm, (23)

and use exponent addition rules to get:100

Cm+1e
r(Tm+1−Tm) > Cm. (24)

This constraint is consistent with our intuition because the Call price at the next expiration is multiplied101

by a discounting term for the interest in the period between the two expirations.102

3.4 Puts: Monotonic Constraints103

Using the Put-Call Parity formula, we can now derive the same constraints for Puts.104

3.4.1 Lower Bound105

Starting with the equivalent Call condition:106

Ci − e−rτ (Ki+1 −Ki) ≤ Ci+1, (25)

substituting using PCP:107

Se−qτ
−Kie

−rτ + Pi − e−rτ (Ki+1 −Ki) ≤ Se−qτ
−Ki+1e

−rτ + Pi+1, (26)

subtracting the S term from both sides, and expanding:108

Pi −Kie
−rτ +Kie

−rτ
−Ki+1e

−rτ
≤ Pi+1 −Ki+1e

−rτ , (27)

finally, adding the Ki+1 term to both sides, and cancelling out the Ki terms, we get:109

Pi ≤ Pi+1. (28)
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3.4.2 Upper Bound110

Again starting with the equivalent Call condition:111

Ci+1 ≤ Ci, (29)

substituting using PCP:112

Se−qτ
−Ki+1e

−rτ + Pi+1 ≤ Se−qτ
−Kie

−rτ + Pi, (30)

and subtracting the S term from both sides:113

Pi+1 −Ki+1e
−rτ

≤ Pi −Kie
−rτ , (31)

and finally adding the Ki+1 term to both sides:114

Pi+1 ≤ Pi −Kie
−rτ +Ki+1e

−rτ . (32)

3.5 Puts: Convexity Constraints115

Beginning with the Call condition:116

Ci+2 ≥ Ci+1 +
Ci+1 − Ci

Ki+1 −Ki

(Ki+2 −Ki+1) , (33)

substituting using PCP:117

Se−qτ
−Ki+2e

−rτ + Pi+2 ≥ Se−qτ
−Ki+1e

−rτ + Pi+1+

Se−qτ −Ki+1e
−rτ + Pi+1 − Se−qτ +Kie

−rτ − Pi

Ki+1 −Ki

(Ki+2 −Ki+1) , (34)

subtracting the S term from both sides, and simplifying:118

Pi+2 −Ki+2e
−rτ

≥ Pi+1 −Ki+1e
−rτ +

Pi+1 − Pi − e−rτ (Ki+1 −Ki)

Ki+1 −Ki

(Ki+2 −Ki+1) , (35)

add the Ki+2 to both sides and use the distributive law:119

Pi+2 ≥ Pi+1 + e−rτ (Ki+2 −Ki+1) +
Pi+1 − Pi − e−rτ (Ki+1 −Ki)

Ki+1 −Ki

(Ki+2 −Ki+1) , (36)

use the distributive law again for Ki+2 −Ki+1:120

Pi+2 ≥ Pi+1 +

[

e−rτ +
Pi+1 − Pi

Ki+1 −Ki

−
e−rτ (Ki+1 −Ki)

Ki+1 −Ki

]

(Ki+2 −Ki+1) , (37)

cancel out terms:121

Pi+2 ≥ Pi+1 +
Pi+1 − Pi

Ki+1 −Ki

(Ki+2 −Ki+1) , (38)

which mirrors our Call convexity constraint. Next, we have the constraints from the requirement that122

Puts and Calls must have positive prices:123

Pi ≥ 0, (39)

and through Put-Call Parity:124

Pi ≥ Kie
−rτ

− Se−qτ . (40)



Finally, from the Call constraint:125

Ci ≤ Se−qτ , (41)

and substituting using Put-Call Parity:126

Se−qτ
−Kie

−rτ + Pi ≤ Se−qτ , (42)

and rearranging:127

Pi ≤ Kie
−rτ (43)

.128

3.6 Puts: Calendar Constraints129

For the Put calendar constraint, we begin with the Call calendar constraint:130

Cm+1e
r(Tm+1−Tm) > Cm, (44)

substituting using PCP:131

er(Tm+1−Tm)
[

Se−qτ
−Ke−rτ + Pm+1

]

> Se−qτ
−Ke−rτ + Pm, (45)

subtract Se−qτ and add Ke−rτ to both sides, and group like terms:132

Se−qτ
[

er(Tm+1−Tm)
− 1

]

+Ke−rτ
[

1− er(Tm+1−Tm)
]

+ Pm+1e
r(Tm+1−Tm) > Pm. (46)

4 Experimental Analysis133

This section details how to use the conditions derived in the previous section to check for arbitrage viola-134

tions in the price of Kelly curves. After checking whether arbitrage violations exist, a procedure is detailed135

for using the constraints to calculate suboptimal Kelly curves which comply with the supplied no-arbitrage136

conditions.137

4.1 Arbitrage Analysis138

First, the Kelly curves were calculated for selling a range of Puts across different strikes, expirations, and139

utilization (bet fraction in Kelly terms) parameters for Ethereum (i.e. the space of arguments):140

• Expirations (days): 1, 7, 14, 21141

• Strikes (%): 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125142

• Util (%): 0-99.9 every 2 percent143

• Training Data Range (Daily Prices): August 8th, 2015 to November 30th, 2021144

All of the arbitrage constraints were tested at each point in the space of arguments in Figure 3. Each145

testing result corresponds to one circle in the graph: green for no-arbitrage and red for at least one146

arbitrage constraint is violated.147

In this case, the deeply in-the-money strikes violate two of the no-arbitrage constraints for Puts. This148

can be seen in the region where the price graphs for each expiration cross. The two constraints which are149

violated are the Calendar Constraint (farther expirations should be more premium than closer expirations),150

and the Put-Call parity constraint in Equation 40 requiring Calls to be a positive value. In other words, at151

the prices of those Puts, the equivalent out-of-the-money Calls would need to be at a price less than zero.152

It can be seen in Figure 4 and Figure 5 that the violations are not as severe at higher utils. The reason153

for this is because the no-arbitrage boundary which was derived from the definition of a Call does not154

depend on capital utilization. As premiums are higher at higher utilization, the prices are closer to the155

boundary.156
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Figure 3: Put prices at each strike and expiration for util at 30%.

Since the no-arbitrage constraints would calculate a higher premium, from the Kelly perspective the Put157

seller would be under-betting according to the supplied probability distribution. Both of these constraints158

are lower bounds, so by calculating additional premium above what the Kelly formula is asking according159

to the distribution it would not cause the Put seller to be in danger of negative expected return over time.160

In the next section, the Kelly curves are compared with curves generated by constraining the Kelly curves161

using the arbitrage conditions.162

4.2 Generating No-Arbitrage Kelly Curves163

Some users may wish to calculate suboptimal Kelly curves which are consistent with a defined set of164

no-arbitrage constraints. For this process, the no-arbitrage constraints are used to confine the range of165

premiums in which the Kelly optimizer is running. The true Kelly optimum may lie outside the range of166

premiums being searched, and instead, the optimizer will select the no-arbitrage boundary value which is167

the best it can find.168

Some of the results of this process can be seen in Figure 6 and Figure 7. This curve comparison is169

at a strike that is deeply in-the-money where it was observed the constraint violations were happening. In170

curves at strikes where there is no violation, the optimal and no-arbitrage Kelly curves are equivalent. As171

a result, they are not discussed further.172

Note that at higher utils, the two curves in Figure 6 and Figure 7 are above the no-arbitrage value and173

the two curves are the same. This is consistent with the output seen in Figure 4 and Figure 5 where the174

boundary violations were not as numerous for higher capital utilization comparisons. There are only one175

or two results observed where at high utils the entire Kelly curve was below the constraint.176

The No-Arbitrage Kelly Put prices from the suboptimal curves can be seen in Figure 8 and Figure 9.177

The constraints hold at every util (bet fraction), and the price curve crossing behavior which was seen in178

the earlier analysis is not present. This process can be generalized with any input return distribution for179

curve generation.180

5 Conclusion181

No-arbitrage constraints were derived for both Calls and Puts. These loose constraints were then used to182

check a set of Kelly curves derived from daily historical Ethereum returns for violations of the arbitrage as-183



Figure 4: Put prices at each strike and expiration for util at 10%.

Figure 5: Put prices at each strike and expiration for util at 99.9%.
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Figure 6: The Kelly Curve (Red) vs the suboptimal Kelly Curve (Blue) which obeys the no-arbitrage con-

straints for 115% ITM and 14 Days to Expiration.

Figure 7: The Kelly Curve (Red) vs the suboptimal Kelly Curve (Blue) which obeys the no-arbitrage con-

straints for 115% ITM and 21 Days to Expiration.



Figure 8: No-Arbitrage Kelly Put prices at each strike and expiration for util at 10%.

Figure 9: No-Arbitrage Kelly Put prices at each strike and expiration for util at 99.9%.
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sumptions and Put-Call parity. After demonstrating the prices generated for this data violate the constraints184

in certain cases, it was shown that the no-arbitrage boundaries can be used to constrain the optimizer.185

The Kelly curves generated by the constrained optimizer were in certain cases suboptimal but maintained186

consistency with the defined no-arbitrage boundaries. This method can be used with any constraint set,187

probability distribution, or payoff function and the Kelly formula without any loss of generality.188
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