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Abstract

One of the main ideas behind options contracts in the Potion Protocol is that they allow the Liquidity
Provider (LP, the entity writing or selling the contract) to adjust the amount of premium that the LP would
be charging the buyer of the option contract as a function of the LP’s capital utilization (bonding curve).
This ability of the Potion contracts allows the user to save on gas costs (and therefore transaction costs)
when offering a quote to a hypothetical market. The ability also raises the question as to what the shape
of this function should be. How can an LP intelligently specify this function, and how does the function
shape relate to the LP’s investing risk? Presented here is an application of the Kelly Criterion which
demonstrates an optimal solution for the LP according to a specified probability model. While the model
presented here is a simplified version of the dynamics of a market, the method can be used with any
probability model to generate bonding curves and optimal quotes for Potion Protocol option contracts
without a loss of generality.

1 Problem Statement1

When an options contract is created there are two parties, a buyer who pays an insurance premium to2

become the owner of the contract, and a seller who collects the premium and underwrites the payout of3

the contract if it is exercised by the buyer. In the Potion Protocol, this seller is known as the Liquidity4

Provider or LP because they would be providing their capital to underwrite these contracts for buyers.5

The issue of immediate concern for the LP is not ’What is the price of this option according to some6

pricing formula like Black-Scholes?’ The issue of concern is ’How can I avoid ruin and ensure my capital is7

growing at an average rate?’ To address this question, this paper will examine the use of the Kelly Criterion8

and demonstrate how an LP could use it to give themselves an average advantage in their bets. This is9

similar to how a casino has a ’house edge’ in gambling games or an insurance company has an average10

profit over all of their customers.11

In Section 2 the mathematical background of the problem is presented. This will give the reader a12

high-level overview of topics such as return distributions, random walks, convolutions, options contract13

payoffs, and fair betting odds. In Section 3 results and example bonding curves of different assets, strikes,14

and expirations are shown. Finally, in Section 4 future work and conclusions are discussed.15

The format of the Liquidity Provider bonding curve is as follows. On the X-axis is the betting fraction16

of the LP. This ranges from 0 to 1 where 0 the LP is betting 0% of their capital and at 1 the LP would be17

betting 100% of their capital. On the Y-axis is the optimal premium to charge the buyer at each specified18

betting fraction. An example curve can be seen in Figure 1.19

2 Background20

An overview is presented of the mathematical background required to use the Kelly Criterion with option21

payouts. This overview begins with a review of the return distribution and its calculation. It then proceeds to22

discuss random walks and propagating the return distribution forward in time using convolution. Next, the23

overview presents a commonly used statistical distribution for modeling market processes. Afterward, the24

overview presents the payoff functions of option contracts and how to represent them in terms of betting25

odds. Finally, the overview is complete and the reader is shown the Kelly Criterion directly and how to use26

it to generate the bonding curve.27
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Figure 1: An example bonding curve

2.1 Return Distribution28

The distribution of financial returns is the building block of the probability model presented here. First,29

some time step must be picked like 1 day, 1 hour, or 5 minutes. The return distribution will be calculated by30

examining changes in the price of the asset at each time step. After the return data has been calculated,31

a technique called Maximum Likelihood Estimation (MLE) is used to fit a probability distribution to the32

historical data.33

2.1.1 Simple vs. Log Returns34

There are many methods of representing the return of an investment. Two of the most common are Simple35

Returns and Log Returns. Each has its advantages and disadvantages. The Simple Return is calculated36

in Equation 137

rs =
Pi − Pi−1

Pi−1
, (1)

where rs is the Simple Return, Pi is the price of the asset on day i, and Pi−1 is the price of the asset38

on day i−1. The Log Return formula is derived from the compound interest rate formula and is calculated39

in Equation 240

r = ln

(
Pi

Pi−1

)
, (2)

where r is the Log Return.41

While it is more intuitive to understand quantities expressed in terms of Simple Returns, it is more42

intuitive to do math calculations using Log Returns. For example, a Simple Return of 1.0 where the asset43

doubles in price is undone by a Simple Return of −0.5 where the asset falls to the same price. For Log44

Returns, the same price path is a 0.693 increase and a −0.693 decrease. If one were to average these45

two values, for Simple Returns the incorrect value of 0.25 would be produced as the average return, even46

though the price did not change. For Log Returns, the average of the two returns is 0. This is due to the47

addition property of the logarithm. To calculate the Log Return over 30 days, one simply needs to add up48

the daily Log Return for each of the 30 days. In addition, over small price changes, the Log Return is still49

approximately equal to the percent return.50

One final helpful property of the Log Return occurs when it is used to represent the return of assets51

that cannot drop below 0 in price. Ordinarily, if the distribution of Simple Returns were used special52

consideration would need to be made to add a boundary on the left tail of the distribution to represent53

this limitation around 0. When the same return distribution is represented using Log Returns, this 0 value54

occurs at −∞ and no bounds on the tails need to be considered.55

2.1.2 Transformations Between Domains56

One additional useful tool is needed to compare the two inputs to the Kelly formula. The option payoff is57

defined over possible prices, while the probability distribution is defined over possible returns. To transform58
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the probability density function (PDF) in one domain like Log Returns to another domain like probability59

density over possible prices two steps must be taken. First, the sample points of the function in one domain60

need to be transformed into sample points in the other domain. This can be accomplished directly using61

the Log Return formula in Equation 2 by specifying a current price around which the distribution will be62

centered. The second step is to scale the height of the discrete bin of density. The amount of probability63

present in the bin must be preserved as constant during the transformation, so by using some numerical64

integration rule like the Trapezoidal Rule the function can be transformed. Equation 3 demonstrates this65

transformation using the Trapezoidal Rule by66

yt2 =
(x2 − x1) (y1 + y2)

xt2 − xt1

− yt1 , (3)

where x1 and x2 are the X values of the two bin edges point 1 and point 2 in the starting domain (e.g.67

possible log returns). Values y1 and y2 are the Y values of point 1 and point 2 in the starting domain. The68

values xt1 and xt2 are the X values in the transformed domain (e.g. possible prices), and yt1 and yt2 are69

the Y values of the density function in the transformed domain. The full density function can be calculated70

by iterating over all of the sample points or using a numerical optimizer.71

(a) (b)

Figure 2: The same probability density function in both the log return domain (a) and over possible prices
(b) with a current price of 200. The Y-axis is a measurement of probability density.

2.1.3 Maximum Likelihood Estimation72

Maximum Likelihood Estimation is a technique for fitting a parameterized probability distribution to a set73

of data. First, for a given starting set of parameters, the distribution function is calculated. Next, using the74

likelihood function (or log-likelihood) a score is calculated representing how likely it is that the distribution75

with the chosen set of parameters generated the random data that was observed. Finally, the parameter76

set is changed and the process is repeated using a numerical optimization algorithm. This optimization is77

repeated until the likelihood is maximized (or negative likelihood minimized). This process produces the78

parameter set which was most likely to have generated the observed data. Some convenient properties79

of this method are that it works even when the data fits a distribution that has an infinite variance, and that80

the method has been proven to give parameter estimates that are accurate in the limit of large sample81

sizes[1].82

An example of fitting a probability distribution to a series of log return samples can be seen in Figure83

3. The histogram of observed data can be seen in blue and the fit statistical distribution can be seen in84

orange. Other techniques for fitting empirical data like least-squares fitting can give inaccurate estimates85

for distributions that are fat-tailed. Since financial data is often modeled using these distributions, MLE is86
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Figure 3: Fitting a PDF function to log returns using Maximum Likelihood Estimation

a useful technique for the purposes presented here. Though it is necessary for fitting these distributions87

to empirical data, it is not sufficient. When rigorously fitting empirical data, MLE should be supplemented88

with goodness-of-fit and statistical tests using alternative candidate distributions. If a candidate distribution89

is rejected by the test it is inappropriate to use it when modeling a set of observed data[1]. Since these90

rigorous techniques are not necessary to illustrate the technique for bonding curve generation they are not91

discussed here further.92

2.2 Random Walks93

The concept of a random walk will be introduced briefly here, but it can be used for Monte Carlo simulation94

and Backtesting to empirically verify the analytical curves generated with the Kelly method covered later95

in this paper.96

Figure 4: Possible random walks generated from a return distribution

To simulate possible future price movements for the asset for which the return distribution was fit, one97

technique is to generate a path using a random walk. In brief, for each future time step, a random sample98

is drawn from the fit return distribution. These samples are converted into price movements and used to99

build the path starting from the current price of the asset. This path produced is one possible integral with100

respect to time, and the technique can be repeated as many times as desired to produce a set of possible101
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future paths of the asset. An example of possible future paths can be seen in Figure 4.102

This method can be computationally intensive, so rather than use it for the curve generation technique103

it is used in a companion paper to verify the results presented here. For an extensive discussion of random104

walks and stochastic calculus, see Shreve[2]105

2.3 Convolution106

Suppose that one wanted to create a probability distribution for returns 30 days from now. One could107

examine the historical data and calculate the return for each 30-day period and add it to a histogram.108

Unfortunately, this would only yield around 12 samples per year of data for the histogram. Instead, one109

can use the 1-day distribution and propagate it forward in time using a technique called Convolution. This110

technique assumes that returns from one day to the next are independent of each other. Convolution is111

often used in fields like signal processing and acoustics. A convolution is an operation on two mathematical112

functions which produces a third function as output. This output function describes how one function is113

modified by the other. In this case, the probability density function of the return distribution is convolved114

with itself. This produces as output the return distribution for the next period. For example, taking the115

1-day return distribution and performing the convolution with itself produces the 2-day return distribution116

assuming independent returns.[3]117

Figure 5: A log return distribution under convolution with itself 4 times. X axis represents log return and Y
axis probability density.

This process causes the peak of the probability distribution to decrease in amplitude and the ’shoulders’118

of the distribution to get thicker. This process can be seen in Figure 5. The return distribution with the119

highest peak is the 1-day return distribution. Each successive distribution is the 2-day, 3-day, 4-day, and120

5-day return distribution. Each day the uncertainty of the outcome increases and the probability density is121

’spread out’.122

Mathematically, this is expressed as follows. The convolution C(z) is defined as123

C(z) =

∞∑
x=−∞

f(x)g(z − x), (4)
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where f and g are any two functions. In this case, both f and g are the probability density function of124

the returns. Supposing that X and Y were independent random variables like the return on the first day125

and the return of the asset on the second day. The random variable Z = X +Y has the distribution which126

is the convolution of the distribution f(x) for X and g(y) for Y .[3]127

This technique is convenient because it requires much less computational effort to propagate the return128

distribution forward in time than the Random Walk technique presented in Section 2.2. The computations129

can be performed quickly utilizing the Fourier transform and multiplication of the transformed densities.130

2.4 Skewed Student’s T131

The Student’s T distribution is commonly used in science and engineering applications. The distribution is132

also a well-studied distribution for modeling financial returns. It has a parameter ν, called the Degrees of133

Freedom which controls the tail behavior and the number of statistical moments defined for the distribution.134

For 0 < ν ≤ 1 the mean is not defined. For 1 < ν ≤ 2 The variance of the distribution is not defined. For135

2 < ν ≤ 3 the third moment is not defined, etc. When ν → ∞ the Student’s T approaches the Normal136

distribution.137

Student’s T is used as a two-tailed power-law distribution to model bell-shaped unimodal distributions.138

These distributions have tails that asymptotically approach zero and have a continuous and smooth density139

function [4].140

Figure 6: A Skewed Student’s T distribution representing an asset that rises more often than it falls in
price. X axis represents log return and Y axis probability density.

To capture skew in the probability distribution of an asset, a process for introducing skew to symmetrical141

distributions was used. This skewness procedure outlined in Fernandez[5] allows the introduction of skew142

to a symmetric Student’s T distribution without affecting the tail behavior of the distribution. This allows143

skew to be controlled independently through an added skew parameter which is estimated during MLE of144

the distribution’s parameters. The procedure is as follows: Assume a unimodal, univariate, and symmetric145

PDF function f . The skewed distribution is generated using a scalar parameter γ ∈ (0,∞) such that146

p(x) =
2

γ + 1
γ

[
f

(
x

γ

)
I+(x) + f (γx) I−(x)

]
(5)
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where p(x) is the PDF of the Skewed T distribution, I+ is the indicator function for values [0,∞), and147

I− is the indicator function for values (−∞, 0). Using this method the amount of probability mass on each148

side of the symmetry point 0 can be controlled using γ. An example of this can be seen in Figure 6,149

however, the skew is magnified far above the normal level for an asset for illustration here.150

It is worth noting that the skew parameter presented here is related but is not the same as the third151

moment of the distribution, which is often called the Skew of the distribution. An asset with an asymmetrical152

return distribution is known as a biased asset. These assets tend to have decreased volatility while rallying153

and increased volatility during sell-offs. This is the origin of the adage ’up the escalator and down the154

chute’. For a thorough discussion of biased assets, skew, and the relationship to an asset’s volatility, see155

Chapter 15 of Taleb’s Dynamic Hedging[6]156

2.5 Fair Betting Odds and House Edge157

The betting odds of a game are the payout that a player receives when the game has different outcomes.158

There are many conventions for expressing the odds in a game. The convention expressed here is called159

Decimal Odds. If the odds are 3, the outcome pays out a multiple of 3 times the amount wagered, including160

the amount bet. Otherwise, the player loses the full amount wagered. An example that illustrates the161

concept is rolling a fair die. For the bet where the player rolls a 6, the payout odds are 5. There are six162

possible outcomes, where on outcomes 1-5 the player loses the total bet (−1 ∗ a where a is the amount163

wagered), and on outcome 6, the player earns 5 ∗a. If the die is fair and each outcome is equally likely the164

average payout of this game is $0, i.e. −1− 1− 1− 1− 1 + 5 = 0. The odds for the opposite side of this165

bet (the player rolls any number except 6) are the inverse, i.e. 0.2 + 0.2 + 0.2 + 0.2 + 0.2− 1 = 0. These166

odds are always scaled to be in terms of the maximum loss of the bet.167

This concept of a ’fair’ bet is related to the expected value over the possible outcomes. The expected168

value is defined as169

E [X] =

n∑
i=0

pibi, (6)

where E is the expectation operator, X is the random variable with n possible outcomes, and pi170

represents the probability of outcome i, and bi is the payout odds for outcome i. The expected value is171

the average over all outcomes[7]. Normally, when calculating an average the calculation involves dividing172

by the total number of outcomes after performing the sum. Conveniently, probability values are already173

normalized to add up to 1, so the extra division is unnecessary. Bets which have their expected value174

as a positive number are called positive expectation bets, and a successful investor or gambler is usually175

aiming to find and make these bets. Bets which have their expected value as a negative number are called176

negative expectation bets and are encountered frequently. For example, casino games have a ’house177

edge’ and are games with a negative expected value. An alternative way of thinking about fair payout178

odds is that odds are fair when the payout odds are equal to the reciprocal of the probability value for each179

outcome.180

2.6 Option Payoffs and Spreads181

For options contracts, the payouts can also be expressed in terms of their payout odds. This is easiest182

in the case of buying an option contract, in which case the max loss is simply the premium paid for the183

contract. It is also possible when writing a put since the maximum loss exists when the price of the184

underlying drops to zero. It is not possible however when writing a call or writing a put on assets where185

the price of the underlying can be negative. The reason for this is if the payout is being scaled by the186

worst-case loss, i.e. bi = y/m where y is the premium collected and m is the max loss. As m → ∞, the187

value bi → 0. In the Potion Protocol, it is not possible to place these types of bets because every position188

must be fully collateralized. A position where loss is unlimited is not possible. As a result, these cases189

need not be considered here.190

Spread positions are also possible. For example, to create a vertical spread the LP only needs to turn191

around and act as the buyer on a different strike than the strike which they are writing contracts. This gives192

a different shape for the payout function. Examples of different spreads can be seen in Figure 7. Green193

areas represent outcomes where a profit is made. Red areas represent outcomes where the investor194

loses money. The black horizontal line occurs at −1 the outcome with maximum loss. In general, there is195

an inverse relationship between the payout of a position and the probability of the bet having a favorable196
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outcome. Highly probable outcomes will have low payouts and highly improbable outcomes will have high197

payouts.198

(a) (b)

(c) (d)

Figure 7: Example payout odds functions for different options and spreads. (a) Payout odds for a long call
(b) Payout odds for a short put (c) Payout odds for a vertical spread (d) Payout odds for an iron condor.

2.7 Kelly Formula199

The Kelly Formula first appeared in its modern form in Kelly’s 1956 paper[8]. In this paper, Kelly uses200

a thought experiment to illustrate to the reader the intuitive meaning behind the mathematical formula.201

Kelly proposes a gambler is betting on a baseball game between two evenly matched teams. Since the202

teams are evenly matched, the payout odds are even. This gambler has a private wire or communication203

channel where a friend with advanced knowledge of the game’s outcome is transmitting to the gambler 0204

or 1 depending on the outcome of the game. This allows the gambler to place bets at even odds. With the205

gambler’s advanced knowledge, what is the optimal betting strategy?206

On first inspection, the answer appears to be that the gambler should bet 100% of their capital for a207

maximized final value of 2N times their original capital after N bets. Due to the Law of Large Numbers,208

this strategy leads to the ruin of the gambler with probability one[8]. The cause of this unfortunate outcome209

is due to this side channel of information and the formula’s relationship to Information Theory. It does not210

matter what encoding scheme or redundancy mechanisms are used to reduce the noise present in the211

side channel to the gambler’s friend. The probability of the data being corrupted from a 0 to a 1 or a 1 to212

a 0 is never exactly zero, it is just small. As a result, due to the Law of Large Numbers, the corruption of213

the data will eventually occur and if the gambler is betting 100% of their capital they will be ruined. Since214

with modern communication equipment, the error rate in communication can be made very low, all that the215

gambler needed to do to avoid ruin with this setup was to adopt a less greedy betting strategy. The link216

has now been intuitively established that the optimal betting strategy relates in some way to the fraction of217

the gambler’s capital at risk.218

This link now opens the opportunity for closer inspection of the optimal strategy. This side channel219

of information to the gambler’s friend has a non-zero entropy which leads to uncertainty about the pos-220

sible outcomes. On the transmission side of the wire, symbols representing perfect information about221
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the game’s outcome were transmitted. On the receiving side of the wire, there is uncertainty about what222

specific perfect future information has now been corrupted.223

In a gambling game where there are n possible outcomes, each outcome has an associated payout224

odds bi where if outcome i happens the gambler multiplies the original bet by bi and also is returned their225

original bet. In other words, on an outcome where the gambler loses everything they bet bi = −1, on226

an outcome where the gambler breaks even bi = 0, and an outcome where the gambler doubles what227

they bet bi = 1. Each outcome i also has an associated probability pi which is the probability that the228

outcome happens. For a starting capital of X dollars and the gambler bets fX dollars, where f is a value229

between 0 and 1 representing a fraction of the total. On the next discrete time step or ’turn’ of the game,230

the expected value of the natural log of the total capital is given by231

E [ln (Xt+1)] = ln (Xt) +

n∑
i=0

pi ln (1 + bif) , (7)

where Xt and Xt+1 is the total capital at time step t and t + 1. From this equation, it can be seen232

that the value ln (1 + bif) is the log return on the capital the gambler bet, should outcome i occur. It can233

be seen that the sum term of the equation is the average or expected growth rate of the gambler’s capital234

because of log addition rules. It also becomes clear that the reason the game’s payout was scaled to be in235

terms of the payout odds bi is because it is input to the logarithm, and since f is between 0 and 1 it means236

bi cannot be below −1 or it is undefined.237

The value which must be maximized for the optimal betting strategy is the sum term that is the expected238

growth rate. To maximize this function given by239

k (f) =

n∑
i=0

pi ln (1 + bif) , (8)

take the derivative dk/df and set it equal to zero:240

dk

df
=

d

df

n∑
i=0

pi ln (1 + bif) = 0, (9)

which yields241

dk

df
=

n∑
i=0

pibi
1 + bif

= 0, (10)

by the chain rule. By solving Equation 10 for f , the optimum value f∗ is obtained, where the growth rate242

is maximized for the gambler’s betting fraction[9]. By taking Equation 7 and undoing the natural logarithm,243

E [Xt+1] = Xte
k(f∗), (11)

the compound interest formula is obtained and the optimal average value of the gambler’s capital at244

the next time step. By taking the growth per bet g, and making an assumption m about the number of245

times per year this bet will occur, the growth can be annualized into an equivalent CAGR percentage246

g = ek(f∗), (12)

CAGR = (gm − 1) ∗ 100. (13)

2.7.1 Coin Flip247

Here, a concrete application of the formula is examined so that the reader can obtain a better intuitive248

understanding of its use. Consider a biased coin flip. The probability distribution can be seen in the249

blue line in Figure 8a. This Normal Distribution is located slightly off-center from 0 so that most of the250

probability mass is above zero. In this biased coin flip game, a random sample is generated from this251

probability distribution. If the number is positive, it is considered Heads. If the number is negative, it is252

considered Tails.253

The payout function for this game will also be changed from a normal coin flip. Rather than an even254

payout to the amount the gambler bets, the game will pay out 35% of what the gambler bets if the outcome255

is Heads, and the gambler will lose everything they bet if the outcome is Tails.256
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(a) (b)

Figure 8: (a) Payout odds for a game with two outcomes paired with the PDF of a Normal Distribution (b)
The output of Equation 8: k(f) using the odds and PDF from (a)

One would like to know whether this bet has a positive expected value and is going to make money257

on average. If it is, one would also like to know the optimal amount to bet to ensure that the gambler’s258

capital is growing at the fastest rate that is possible. Equation 8 is applied by iterating over the possible259

bet fractions from 0 to 1 and producing the plot of k(f) in 8b. If the entire function k(f) lines below zero,260

the bet is never profitable on average. Here, there is a bet fraction region that is profitable. The optimal bet261

fraction is found by finding where Equation 10 crosses zero. This value f∗ is located at 0.281 and gives262

a value k(f∗) = 0.01481. By applying Equation 12 to calculate the average growth per bet as 1.0149 or263

about an average of 1.5%. Then, Equation 13 can be applied assuming some value like m = 5 for an264

equivalent average annual CAGR of 7.686%.265

This behavior as the gambler’s betting fraction approaches 100% is a characteristic of the logarithm. It266

illustrates why no matter how low the entropy of the gambler’s side channel is in Kelly’s thought experiment,267

the gambler will be ruined with a probability of 1 if the entropy is not 0. As the bet fraction approaches 100%268

the log of the average growth rate approaches −∞ in the limit. It can also be seen that the consequences269

of over-betting are high. Bet fractions where the line is below zero will mean that the gambler would lose270

capital over time, even if the probabilities appear to be in the gambler’s favor.271

2.7.2 Contract Writing272

This section moves to the problem of generating the bonding curves for Potion Protocol options contracts.273

This problem considered is slightly inverted from the Coin Flip. Rather than consider the problem from the274

point of view of a speculator, it is considered from the perspective of the ’casino’, i.e. ”How much premium275

should the LP charge the speculator to give themselves ’edge’ in the game?” One should note that the LP276

is not the one sensitive to time in this trade, it is the speculator who must buy the option ’now’ to act on277

their trade idea. As a result, the LP has the luxury of being able to wait for a good deal that will give them278

an edge in the payout of the game.279

The problem follows the same process and can be used regardless of whether it is a single contract280

or multiple on the same asset as part of a spread. First, the LP will consider the maximum possible loss281

of the position. Next, this value will be used with the payout function to calculate the payout in terms of282

the betting odds bi. This is possible for positions that are not writing a ’naked’ call. In the Potion Protocol,283

a requirement is that all contracts must be fully collateralized, so it would not be possible to take such a284

position anyway. The call writing would need to either be part of a spread or a covered call to meet the285

collateral requirement, which would have a different payout odds function than one with an infinite max286

loss.287

Next, the distribution fit from the log-returns needs to undergo convolution with itself the number of time288
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steps between now and the option’s expiration. For example, the daily log return distribution would need289

convolution with itself 30 times to produce the 30-day distribution. This process assumes independent290

returns. With both the distribution and payout odds function, the plot in Figure 9a can be calculated. For291

visualization in this paper, a bull put spread was chosen because it gave more convex curves with a more292

exaggerated payout to illustrate the concept than a ’naked’ put.293

To generate the plots and the bonding curve, the LP iterates over each possible bet fraction and varies294

the amount of premium collected for the position. This generates the multicolored lines in Figure 9. One295

line exists for each bet fraction. Figure 9b is the log expected growth rate Equation 8 and similar to Figure296

8b in the coin flip, only one line for each bet fraction. Figure 9c is Equation 10 at each bet fraction. Finally297

Figure 9d, the bonding curve is generated by varying the premium values until each point the lines in298

Figure 9c cross zero, which is the maximum values of the curves in Figure 9b. As a result, the curve of299

optimal premiums at each bet fraction is generated.300

(a) The probability distribution and possible payout odds (b) The log of the expected growth rate for possible premi-
ums

(c) The derivative of the log expected growth rate (d) The curve of optimal premiums for each betting fraction

Figure 9: Analysis of a hypothetical OTM bull put spread on SPY 2 days until expiration. The short leg is
365 and the long leg is 335 with the underlying at 366.28. Multiplier 1. The premium of the bull put spread
is varied at each betting fraction until the maximum value of (b) occurs at that fraction. This happens
when each line in (c) crosses zero. These optimal premiums are assembled into curve (d) which is the
optimal bonding curve of the Potion Protocol option. This optimality is according to the assumptions of the
estimated probability values in the distribution in (a).

Normally, with a spread like the one in Figure 9 the person making the bet must also consider the fact301

that the contract has a discrete value and minimum bet. For example, on an Equity contract like SPY with302

a multiplier of 100 the max loss of the minimum bet of 1 contract would be $2, 948.00. This might be a303

prohibitively high bet fraction for small accounts. Due to the high divisibility of cryptocurrency assets, it is304

possible to bet fractional amounts of contracts. The multiplier for Potion Protocol options is 1 making the305

equivalent bet $29.48 and a bet could be placed for a fraction of a token 0.1 for $2.948 or 0.01 for $0.2948306

etc. The analysis of a minimum bet size on the LP will not be considered further here.307

For any probability model, the LP would be wise to consider the premium curve generated as a ’min-308

imum profitable bet’ and add a personal factor of safety to move the curve in Figure 9d upward. The309

probabilities in trading are not fixed like a gambling game and will change with time. The optimal premium310

curve is only optimal under the assumptions made by the probability model and no mathematical model is311

ever perfect. It could be that while the estimated probability distribution says the LP has an edge, accord-312

ing to the unknown ’true’ probability distribution the LP does not. This factor of safety could be based on313

how much the LP trusts the model. There is no harm to the LP to wait for an extra ’edge’ in the game and314

a better deal, it only means that the LP’s positions will be traded less frequently because the higher factor315

of safety, the more likely it is another LP will offer a more competitive price.316

The method by which the LP models the probability distribution is the ’side channel’ from Kelly’s thought317
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experiment. Here, the distribution of historical returns was used which assumes that future price move-318

ments would be similar to past ones. The similarity of the two distributions affects how much edge the LP319

has. Side channels could take many forms. It could be the historical outcomes of a game, a fancy financial320

indicator, the financial statements of a company, the investor’s grandmother fortune telling the outcome321

from coffee grounds, or an expert card player reading people’s faces during a game. Depending on how322

much each of these channels corrupts the information they deliver about the future outcome decides how323

useful the information is for the gambler or investor’s betting. Low entropy channels are the most profitable.324

It has been shown that the maximum financial value of the information side channel is equal to the mutual325

information between the game outcome and the information delivered from the side channel[7].326

The same statement can be expressed in terms of Relative Entropy. The Relative Entropy is a measure327

of how different one probability distribution is from another and how ’surprised’ the user is. If the estimated328

distribution said an event was very common, but in the true distribution it was rare (or vice versa) the329

degree of surprise i.e. the Relative Entropy would be a high value. In contrast, if the estimated distribution330

was fairly close to the true distribution the Relative Entropy and surprise would be a low value. The rate at331

which the gambler’s capital grows is proportional to the difference in the Relative Entropy of the Casino’s332

estimate of the true probability distribution and the Relative Entropy of the gambler’s estimate of the true333

probability distribution. In other words, whichever player in the game has a more accurate estimate of the334

odds will increase their capital over time.[7] The Casino’s estimate is the probability estimate implied by335

the game’s payout odds. In the case of the options market, this is the probability estimate implied by the336

market prices. Relative Entropy can also be thought of as information gain, i.e. ’How much information is337

gained by using the true probability distribution instead of the estimated distribution?’338

Suppose an investor were to use the historical return distribution as an estimate of the true probability.339

Also suppose that the true probability is the same distribution, but has its skew parameter change over340

time. In addition, the investor bets according to the Kelly Formula as was presented here. The investor341

would have a positive average growth rate of their capital during the periods where the historical distri-342

bution better represented the ’true’ probability. During the periods where the distribution implied by the343

market prices was a better estimate of the true probability the investor would lose money. When there are344

fixed known events in the future, the implied distribution can be a better estimate of the true probability345

since the market prices will reflect this information. Some examples of these events include earnings an-346

nouncements for a stock, an election, or perhaps a contentious upgrade or fork of a cryptocurrency. At347

other times, the market’s belief could be wrong and the historical distribution might be a better estimate of348

the true distribution.349

2.7.3 Curve Fit350

Figure 10: A parameterized curve fit according to Equation 14

To save on gas i.e. transaction costs, it is necessary to store the optimal premium curve as a continuous351

function. Parametrization requires only a few values to store. Storing all curve data points is many more352

values and therefore is much more costly. To help reduce this burden, the curves are stored parameterized353

to some fit. With this fit, it is important to capture the behavior of the formula as the bet fraction approaches354

one.355

The fit function used has 4 fit parameters, A, B, C, and D. The function is of the form356

f(t) = At ∗ cosh(BtC) +D (14)

where t is the bet fraction and f(t) is the premium calculated from the fit parameters. An example fit357

can be seen in Figure 10. By adjusting the fit parameters the LP can ensure the parameterized fit is an358

overestimate of the optimal premium curve.359
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3 Results360

As a demonstration of the method’s ability, result curves are generated here for SPY and compared to the361

actual market prices for those bull put spreads. This is presented in Figure 11. These 3 bull put spreads362

are compared against the market closing prices across two expirations. The closing prices of the SPY363

contracts were divided by 100 to match the multiplier of 1 for the Potion Protocol option.364

Each of the market prices for the spread falls within the range of the curve, suggesting that at lower365

betting fractions the LP would have a trading edge according to the historical probability model. There366

appears to be a greater edge for the strikes which are more OTM. It could be that since the bull put spread367

is a position that makes money from the passage of time, the spreads farther OTM have more edge. These368

options have a larger portion of their value from their extrinsic value. However, no relationship between369

the two can be established with this quick visual comparison.370

(a) Strike 355 Exp 12/14 (b) Strike 355 Exp 12/16

(c) Strike 365 Exp 12/14 (d) Strike 365 Exp 12/16

(e) Strike 375 Exp 12/14 (f) Strike 375 Exp 12/16

Figure 11: Optimal premium curves for bull put spreads on SPY after the market close on 12/11/2020.
Blue lines represent the premium curves. Black lines represent the closing midpoint price of that spread
on 12/11 scaled to a contract multiplier of 1 (the multiplier of Potion Protocol options). Each spread has
the short leg at the strike specified and a width of 30.

These results are quite encouraging. However, as the results were propagated forward in time they371

would begin to diverge from the market prices. This is primarily because the simplified model presented372

here assumes that the historical return distribution is fixed and unchanging as it moves through time. It is373

not capturing the rich set of information present in the current market prices of the options and the implied374

volatility surface, so this model would miss future expected changes in the market and discrete events375

like the earnings release of a stock or an election. For further discussion of the volatility surface, see376

Gatheral[10].377
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4 Conclusion378

This paper demonstrated using the Kelly Criterion to calculate a hypothetical market quote bonding curve379

for an LP in the Potion Protocol. By assuming that an asset’s returns follow a supplied probability distri-380

bution, this tool allows an LP to avoid ruin and give their investment bets a probabilistic edge. The Kelly381

formula gives the LP the ability to calculate which of their premium quotes is expected to make money on382

average or lose money on average. Armed with this knowledge, an LP can better protect its capital while383

providing liquidity for Potion Protocol option buyers.384

For further reading on this topic and simulated backtesting results, please see the Potion Protocol385

documentation[11][12].386
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